
Duration-Informed Workload
Scheduler

MODA 2025
6th ISC HPC International Workshop on “Monitoring &

Operational Data Analytics”. June 13, 2025

Daniela Loreti, Davide Leone and Andrea Borghesi

DISI - University of Bologna, Italy

HPC workload scheduling

• Scheduling decision quality is usually contingent on knowing job duration beforehand
• User-provided time extimations are known to be not very accurate, high overextimations

SCHEDULING
DECISION
QUALITY

KNOWING JOB
DURATION

BEFOREHAND

USER-PROVIDED
TIME EXTIMATES

LOW
ACCURACY

2

Goal and Contribution

We devise a ML-enhanced workload scheduler

• Time prediction module built via Machine Learning
• Devise a workload scheduler enhanced with these predictions
• Test our scheduler’s efficacy on real-life workload traces from a Tier-0 supercomputer

Runtime prediction Duration-informed
scheduler

3

Dataset for runtime prediction

• PM100 [1], a large dataset of real-life job runs (elaboration of M100 [2]: a two-years-long data
collection from MARCONI100 supercomputer hosted by the HPC centre CINECA)

• 628,977 elements (removed entries with missing values) with submission-time features for each job

Runtime
prediction

[1] https://doi.org/10.5281/zenodo.8129257
[2] https://doi.org/10.5281/zenodo.7588815

4

Brief statistical analysis

Dataset from a real Tier-0, production supercomputer → non-trivial workload to handle

• high variability of cpu and memory metrics (large standard deviations and substantial range
between the minimum and maximum values)

• pronounced skewness across most variables (few extreme outliers inflate the averages, creating
a substantial gap between the mean and the more representative median values)

Runtime
prediction

5

Prediction module

• Decision Tree Regressor (DT)
• Random Forest (RF)
• Gradient Boosting (GB)
• Fully Connected Neural Network (FCNN)

• three hidden layers and dropout to prevent overfitting
• Huber loss, (less sensitive to outliers)
• number of layers and the number of neurons in each layer are the result of a non-

exhaustive naïve grid-like search: 15 networks trained varying only these two parameters
to find the best combination.

Runtime
prediction

6

Dataset split ratio of 70%/30%.

We evaluated DT, RF, GB and FCNN based on:
• Mean Absolute Error (MAE)
• Mean Squared Error (MSE)
• Root Mean Squared Error (RMSE)
• Coefficient of determination (R2)
• 95% confidence interval for prediction errors

Investigation of error characteristics categorized as:
• Overestimations
• Underestimations (most problematic)
• Exact estimations (down to half a second)

Prediction task: further setup details
Runtime

prediction

7

Prediction task: results for random split

Best models : RF and
DT

Also, best R2 value
(better explanatory
power)

Exact predictions are
rare

Underestimations
rather high

Runtime
prediction

8

Prediction task: results with data augmentation

Adding the average
resource requested by
each user, i.e.,the mean
values for the requested:
• number of CPUs
• Memory
• physical nodes
• GPUs
• time limit.

Slight error reduction for
DT and RF

Runtime
prediction

9

Prediction task: results for time-consecutive split

Schedulers are
requested to estimate
the runtime of future jobs
given the jobs arrived in
the past →Random split
may not represent a
real-life case

• all the error values are
better (average
better predictions)

• R2 is worse → worse
model performance

• Significantly less
underestimations

Runtime
prediction

10

Prediction module

In general:
• the values predicted by the models are better at approximating the

runtime than the user-provided time limit value:
• When the models overestimate the runtime (on average around 95% of total cases), this

results in almost a 98% improvement (on average)
• ML models underestimate the runtime on average around 5% of total cases, while the

time_limit value does so in just 1.4% of cases

Runtime
prediction

11

Duration-informed workload scheduler (DIWS)

Offline phase:
• Train a DT with historical job data (only once at the beginning of the algorithm execution)

Online phase:
• At submission time, the runtime of each job is predicted
• time requested by each job is set to the predicted value.
• submitted jobs with smaller predicted runtimes are given higher priority

In practice:
• Online SJF algorithm enhanced with runtime estimations derived through ML

Duration-
informed

scheduling

12

DIWS Evaluation

Implemented DIWS in Batsim[3] simulator

SETUP:
• Split the original dataset (∼630,000 elements) into:

• df_sched: last 24 hours (4,407 jobs)
• df_train: the rest of the data (to train the DT)

• Compared DIWS with EASY backfilling in two different setups:
• Setup A: 15,680 computing resources (=MARCONI100)
• Setup B: 512 computing resources (to test the schedulers in stressing conditions)

[3] Dutot, P.F., Mercier, M., et al.: Batsim: a Realistic Language-Independent Resources and Jobs
Management Systems Simulator. In: 20th Workshop on Job Scheduling Strategies for Parallel
Processing. Chicago, US (2016)

Duration-
informed

scheduling

13

DIWS Evaluation – further details

Comparison based on:
• makespan (completion time of the last job)
• scheduling time (seconds spent in the scheduler)
• mean and max waiting time (time between job submission and its actual start time)
• mean and max turnaround time (time between job submission and its end)
• mean and max slowdown (turnaround/execution time.)

Duration-
informed

scheduling

14

DIWS Evaluation – Setup A (large infrastructure)

mean waiting time of a job is more than 11% lower
mean and max slowdown are significantly improved (-94.96% and -97.85%)
maximum waiting time is higher (+34.88%)

→ DIWS is better at estimating the jobs’ duration beforehand, it is also able to identify how a few
jobs are extremely more time-consuming than others and, accordingly, it changes their position
further down the queue

Duration-
informed

scheduling

15

DIWS Evaluation – Setup B (constrained infrastructure)

• mean waiting & turnaround time of a job are more than 28% lower
• mean slowdown shows a +11% increase

→ probably, SJF not best in this setting (does not consider the amount of resource requested)

Duration-
informed

scheduling

16

DIWS Evaluation
Percentage of jobs that wait less than arbitrarily chosen time intervals

Setup A Setup B

Duration-
informed

scheduling

• waiting time is less than 10 minutes for almost
8 times more jobs

• using the DIWS, the waiting time is very high
(more than 1 day) for almost 5% more jobs
than when using the EasyBF

• In large infrastructure setting, waiting time
significantly improved for most jobs

17

Conclusion

Appling ML techniques to runtime prediction seems promising
• Prediction performance test on a real-life dataset of job runs, show the enhancement that ML

can bring w.r.t. time_limit metric provided by users
• DIWS

• Tests on Batsim show clear superiority w.r.t. EasyBF in reducing the average waiting time
• However, better runtime predictions can negatively affect the waiting time of a non-

negligible number of jobs that require much more computing time than others

Future/current work:
• Test different ML strategies (e.g. classification instead of regression)
• Improve DIWS turning SJF+Prediction into “Smaller Energy First (SEF)”+Prediction: consider the

resource request together with predicted runtime
• SEF+Prediction can still be combined with backfilling…

18

www.unibo.it

QUESTIONS?

Duration-Informed Workload Scheduler

Daniela Loreti, Davide Leone and Andrea Borghesi

daniela.loreti@unibo.it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

