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HPC workload scheduling

• Scheduling decision quality is usually contingent on knowing job duration beforehand 
• User-provided time extimations are known to be not very accurate, high overextimations
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Goal and Contribution

We devise a ML-enhanced workload scheduler 

• Time prediction module built via Machine Learning
• Devise a workload scheduler enhanced with these predictions
• Test our scheduler’s efficacy on real-life workload traces from a Tier-0 supercomputer

Runtime prediction Duration-informed 
scheduler
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Dataset for runtime prediction

• PM100 [1], a large dataset of real-life job runs (elaboration of M100 [2]: a two-years-long data 
collection from MARCONI100 supercomputer hosted by the HPC centre CINECA)

• 628,977 elements (removed entries with missing values) with submission-time features for each job

Runtime 
prediction

[1] https://doi.org/10.5281/zenodo.8129257
[2] https://doi.org/10.5281/zenodo.7588815
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Brief statistical analysis

Dataset from a real Tier-0, production supercomputer → non-trivial workload to handle

• high variability of cpu and memory metrics (large standard deviations and substantial range 
between the minimum and maximum values)

• pronounced skewness across most variables (few extreme outliers inflate the averages, creating 
a substantial gap between the mean and the more representative median values)

Runtime 
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Prediction module

• Decision Tree Regressor (DT)
• Random Forest (RF) 
• Gradient Boosting (GB)
• Fully Connected Neural Network (FCNN) 

• three hidden layers and dropout to prevent overfitting 
• Huber loss, (less sensitive to outliers)
• number of layers and the number of neurons in each layer are the result of a non-

exhaustive naïve grid-like search: 15 networks trained varying only these two parameters 
to find the best combination.
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Dataset split ratio of 70%/30%. 

We evaluated DT, RF, GB and FCNN based on:
• Mean Absolute Error (MAE)
• Mean Squared Error (MSE)
• Root Mean Squared Error (RMSE) 
• Coefficient of determination (R2)
• 95% confidence interval for prediction errors

Investigation of error characteristics categorized as:
• Overestimations
• Underestimations (most problematic)
• Exact estimations (down to half a second)

Prediction task: further setup details
Runtime 

prediction
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Prediction task: results for random split

Best models : RF and 
DT

Also, best R2 value 
(better explanatory 
power)

Exact predictions are 
rare

Underestimations 
rather high
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Prediction task: results with data augmentation

Adding the average 
resource requested by 
each user, i.e.,the mean 
values for the requested:
• number of CPUs
• Memory
• physical nodes
• GPUs 
• time limit.

Slight error reduction for 
DT and RF

Runtime 
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Prediction task: results for time-consecutive split

Schedulers are 
requested to estimate 
the runtime of future jobs 
given the jobs arrived in 
the past →Random split 
may not represent a 
real-life case

• all the error values are 
better (average 
better predictions)  

• R2 is worse → worse 
model performance 

• Significantly less 
underestimations

Runtime 
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Prediction module

In general:
• the values predicted by the models are better at approximating the 

runtime than the user-provided time limit value:
• When the models overestimate the runtime (on average around 95% of total cases), this 

results in almost a 98% improvement (on average)
• ML models underestimate the runtime on average around 5% of total cases, while the 

time_limit value does so in just 1.4% of cases 

Runtime 
prediction
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Duration-informed workload scheduler (DIWS)

Offline phase:
• Train a DT with historical job data (only once at the beginning of the algorithm execution)

Online phase:
• At submission time, the runtime of each job is predicted
• time requested by each job is set to the predicted value.
• submitted jobs with smaller predicted runtimes are given higher priority

In practice: 
• Online SJF algorithm enhanced with runtime estimations derived through ML

Duration-
informed 

scheduling
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DIWS Evaluation

Implemented DIWS in Batsim[3] simulator

SETUP:
• Split the original dataset (∼630,000 elements) into:

• df_sched:  last 24 hours (4,407 jobs)
• df_train: the rest of the data (to train the DT)

• Compared DIWS with EASY backfilling in two different setups:
• Setup A: 15,680 computing resources (=MARCONI100)
• Setup B: 512 computing resources (to test the schedulers in stressing conditions)

[3] Dutot, P.F., Mercier, M., et al.: Batsim: a Realistic Language-Independent Resources and Jobs 
Management Systems Simulator. In: 20th Workshop on Job Scheduling Strategies for Parallel 
Processing. Chicago, US (2016) 
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DIWS Evaluation – further details

Comparison based on:
• makespan (completion time of the last job)
• scheduling time (seconds spent in the scheduler)
• mean and max waiting time (time between job submission and its actual start time)
• mean and max turnaround time (time between job submission and its end)
• mean and max slowdown (turnaround/execution time. )

Duration-
informed 
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DIWS Evaluation – Setup A (large infrastructure)

mean waiting time of a job is more than 11% lower
mean and max slowdown are significantly improved (-94.96% and -97.85%)
maximum waiting time is higher (+34.88%)

→ DIWS is better at estimating the jobs’ duration beforehand, it is also able to identify how a few 
jobs are extremely more time-consuming than others and, accordingly, it changes their position 
further down the queue 

Duration-
informed 

scheduling
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DIWS Evaluation – Setup B (constrained infrastructure)

• mean waiting & turnaround time of a job are more than 28% lower
• mean slowdown shows a +11% increase 

→ probably, SJF not best in this setting (does not consider the amount of resource requested)

Duration-
informed 

scheduling
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DIWS Evaluation
Percentage of jobs that wait less than arbitrarily chosen time intervals

Setup A Setup B

Duration-
informed 

scheduling

• waiting time is less than 10 minutes for almost 
8 times more jobs 

• using the DIWS, the waiting time is very high 
(more than 1 day) for almost 5% more jobs 
than when using the EasyBF

• In large infrastructure setting, waiting time 
significantly improved for most jobs
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Conclusion

Appling ML techniques to runtime prediction seems promising
• Prediction performance test on a real-life dataset of job runs, show the enhancement that ML 

can bring w.r.t. time_limit metric provided by users 
• DIWS

• Tests on Batsim show clear superiority w.r.t. EasyBF in reducing the average waiting time
• However, better runtime predictions can negatively affect the waiting time of a non-

negligible number of jobs that require much more computing time than others

Future/current work:
• Test different ML strategies (e.g. classification instead of regression) 
• Improve DIWS turning SJF+Prediction into “Smaller Energy First (SEF)”+Prediction: consider the 

resource request together with predicted runtime
• SEF+Prediction can still be combined with backfilling…
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