

EMOI: CSCS Extensible Monitoring and Observability Infrastructure

Jean-Guillaume Piccinali, May 16th 2024

5th ISC HPC MODA24 Workshop on Monitoring & Operational Data Analytics

https://moda.dmi.unibas.ch

Outline

- Motivation
- EMOI: CSCS Extensible Monitoring and Observability Infrastructure
- Use case: Power measurements and Energy dataset

Disclaimer

- New working group and new (pre-acceptance) system
- This talk is not about power saving techniques (yet)

Motivation

				Green500 #1 I	Power Efficiency		
Sustained Performance and Power Efficiency			Green500	Efficiency			
Top500,	Top 6 Systems	Power Eff.	Power	2010/06			
Green500	(June 2024)	Green500	Top500	2019/00	15.1 GF/W	Idle Compute Node Power Usage	
//1 //7				2019/11	16.9 GF/W	Node Type	Idle Power
#1, # <i>1</i>	Frontier/ORINL	02.084 GF/VV	22.780 KVV	2020/06	21.1 GF/W	Intel Broadwell	183 kWh
#2, #42	Aurora/ANL	26.151 GF/W	38.698 kW	2020/11	26.2 CE/W		
#3. #xx	Eagle/Microsoft Azure	-	_	2020/11	20.2 GF/VV	AMD Rome	091 KWN
// 0, // CO		1E 410 CE /M	20,000,134/	2021/06	29.7 GF/W	AMD Milan	1101 kWh
#4, #08	Fugaku/RIKEN	15.418 GF/VV	29.899 KVV	2021/11	39.4 GF/W	Intel Haswell +	273 kWh
#5, #12	LUMI/EuroHPC	53.428 GF/W	7.107 kW	2022/06	62 7 CE /W	1 NVIDIA P100	$(1 \text{ GPU} - \alpha 1/3)$
#6, #14	Alps/CSCS	51.983 GF/W	5.194 kW	2022/00			(1 GI 0 - 737)
// 0, //	, "hol, co co		0.201.001	2022/11	65.1 GF/W	AMD Milan +	1951 kWh
				2023/06	65.4 GF/W	4 NVIDIA A100	$(1 \text{ GPU} \sim 1/8)$
				2023/11	65.4 GF/W		
				2024/06	72.7 GF/W		

- Left: Better and better energy efficiency in top systems / significant amount of power (22 MW for Frontier),
- Middle: 4x more energy efficient in 4 years / slowdown since November 2022 / best in June 2024,
- Right: Idle parts of a node are getting more and more energy intensive,
- Increased electricity costs in Europe since 2023

Monitoring power and energy is critical

Motivation

• Piz Daint: NVIDIA P100 Cray XC production sytem since 2016

- Alps: new multitenant heterogeneous HPE/Cray EX system
 - 2020/Phase 0: AMD Rome (zen2) CPU nodes,
 - 2022/Phase 1: NVIDIA A100 and AMD MI250x GPU nodes, AMD Milan (zen3) CPU nodes,
 - 2024/Phase 2: NVIDIA Grace CPU and Hopper GPU *GH200* nodes.

EMOI: Extensible Monitoring and Observability Infrastructure

EMOI Infrastructure components: Elastic Stack (ELK)

- Beats: data collection with lightweight shippers, hundreds of GB per day,
- Kafka: buffer and message broker, push model, streaming telemetry,
 - Integrated with HPE CSM/SMA Kafka Bus
- Logstash: data transformation for ES (smaller messages) and Memcached for data enrichment,
- **Elasticsearch**: distributed search and analytics engine designed for storing large volumes of data,
- Kibana/Grafana: analytics and dashboards

EMOI Infrastructure components: Elastic Cloud on Kubernetes (ECK)

- ArgoCD: continuous deployment of the ELK on Kubernetes,
- Benefits of a **GitOps** approach:
 - *Agility*: rapid response to changing workload demands,
 - *Efficiency*: optimized resource utilization increase operational efficiency,
 - *Stability*: configuration change tracking improve operational stability,
 - Automation: Infrastructure as Code allows continuous delivery of updates and new features,
- Cluster management: TerraForm, Rancher and Harvester.

Power measurements and Energy dataset

Collecting Energy Data

PM data: Consumed Energy at Node, CPU and GPU levels can be read from /sys/cray/pm_counters/ sysfs files. Default collection rate is 10 Hz. The energy usage at Node level can also be accessed with the Slurm sacct command.

read pm_counters/energy when the job starts: $E_t0=669376366 J \# 1710250886297894$ us read pm_counters/energy when the job ends: $E_t1=669935671 J \# 1710251151444267$ us get node energy of the job: $E = E_t1 - E_t0 [J]$

• TM data: HPE/Cray sensors are published via the **Redfish** restful API, using the Sensor schema. Default collection rate is **1** Hz.

Validating Energy Data

• We validate data by comparing the energy data collected from slurm/pm_counters (sysfs) with the data collected from telemetry (redfish).

Validating Energy Data: Grace Hopper

- Cleaning 3 months of data (between Feb and May 2024) from outliers by removing jobs with:
 - more than 1 node (nnodes == 1) and short runtime (duration < 10sec),
 - null or unrealistically high energy (ConsumedEnergy == 0 or > 1e9 J),
 - unrealistically high power (Power > 2800 W),
- From **130,840** jobs to **83,845** jobs: a good mix of small, medium, and large power-intensive jobs / 64% of all recorded jobs

"Lies, damn lies and statistics"

• Small number of discrepancies, where 1% of the jobs are showing an absolute delta > 500 W, these variations are under investigation.

GH Cabinet Power (112 compute nodes)

ETH zürich

GH Row Power (6 cabinets)

Central European Summer Time (CEST)

- Daylight saving time: advance clocks to make better use of the longer daylight available during summer
 - Proposed by Benjamin Franklin in April 1784,
 - Germany first country to implement it nation-wide in 1916,
 - From last Sunday in March to last Sunday in October (EU),
 - Interesting clock synchronization problem between facility/hpe/elastic tools.

en.wikipedia.org/wiki/Daylight_saving_time

Conclusion

- EMOI: CSCS Extensible Monitoring and Observability Infrastructure
 - Integration of CSM/SMA into EMOI,
 - Kafka-centric model with low overhead,
 - Git-ops approach is giving us flexibility to create/destroy clusters on demand.
 - Use Energy and Power data to encourage user to optimize their code.

The Data Warehouse and Data Intelligence (DWDI) team

Massimo Benini

Michele Brambilla

Dino Conciatore

Gianna Marano

Fabio Verzelloni

Gianni Ricciardi

James Brunson

Thank you

