
An Exascale Slurm Testing and Evaluation
Environment Utilising Generated DAG Workloads

Laslo Hunhold, Stefan Wesner

Parallel and Distributed Systems Group
University of Cologne

16th May 2024

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 1

Motivation
Current state of Slurm simulators
▶ Mostly focus on scheduling performance
▶ Very fragile and broken due to large changes to Slurm codebase
▶ DAG workloads not supported, but more and more common due to

workflow managers/meta-schedulers

Exascale challenges
▶ Some previously trivial things become very difficult (e.g. GPU

testing/monitoring)
▶ Monitoring/data analysis tools require more testing
▶ No public access representative workload data

Reproducibility
▶ Many MODA innovations are unpublished, especially for exascale

systems
▶ Reproduction/Documentation is often difficult due to tight

integration

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 2

Goals
Extend the scope of Slurm simulators
▶ Job prologs, epilogs, inter-job profiling, etc.
▶ Observe plugin interactions, facilitate software integration/testing
▶ Exascale testing and evaluation environment on a single node

Provide a robust and flexible solution
▶ Minimal code changes
▶ Wide range of applications (monitoring, analytics, etc.)

Improve reproducibility
▶ Clearly document environment setup
▶ Provide environment for testing and evaluation of exascale tooling

on test machines

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 3

DAG Workload Generation (1/2)
Algorithm

▶ No data available, need to generate DAGs
▶ Proposed algorithm

input : r ∈ N0: number of ranks
n ≤ n ∈ N1: min./max. nodes per rank
d ≤ d ∈ N0: min./max. deps. per node

output: G := (V , E): directed acyclic graph
R1, . . . , Rr : sets of nodes of each rank

G = (V , E)← (∅, ∅)
for i ← 1 to r do

ni ← DiscreteUniformRandom(n, n)
Ri ← GenerateNodes(ni)
V ← V ∪ Ri
if i > 1 then

for j ← 1 to ni do
d ← Min(ni−1, DiscreteUniformRandom(d , d))
D ← DrawDistinctRandomFrom(Ri−1, d)
for k ← 1 to d do

E ← E ∪ (Ri [j], D[k])
end

end
end

end

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 4

DAG Workload Generation (2/2)
Example and Parameter Choice

Parameter choice: High sparsity, low node degree
Job parameters: Randomly generated separately as ‘node weights’

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 5

Exascale Slurm Setup (1/3)
Reference and first steps

Reference system: Frontier, Oak Ridge National Labs (1.194 EFLOPS)
▶ 74 rack cabinets, 64 blades per cabinet, 2 nodes per blade
▶ 9,472 ≈ 10,000 nodes, 64 cores per node

What stop us from running Slurm with 10,000 nodes on a single machine?

Basic configuration
▶ Compile Slurm from source with special flag

./configure ... ––enable-multiple-slurmd
▶ Modify slurm.conf: Include %n (node name) in SlurmdSpoolDir,

SlurmdLogFile, SlurmdPidFile
▶ Add node definitions

NodeName=atom[00000-09999] NodeHostname=HOSTNAME
Port=[10000-19999] Sockets=1 CPUs=1 CoresPerSocket=64
ThreadsPerCore=128 State=UNKNOWN PartitionName=part1
Nodes=ALL Default=YES MaxTime=INFINITE State=Up

Does it work? No, hits hard cgroup limits after 1,500 nodes

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 6

Exascale Slurm Setup (2/3)
Trimming overhead

▶ Disable cgroup process tracking (Set ProctrackType to
proctrack/pgid)

▶ Disable task plugin
Does it work? No, nodes launch but are lobotomised

It turns out (after many hours)
▶ Systemd insists on being a ‘cgroup broker’ via dbus
▶ Chokes after around 2,500 nodes, no direct error
▶ Nodes start but can’t communicate with control daemon
▶ Solution (found in Slurm source, but also buried in the manual):

Create a file /etc/cgroup.conf containing IgnoreSystemd=yes

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 7

Exascale Slurm Setup (3/3)
System integration and helper scripts

▶ Give Slurmctld a higher scheduling priority (add Nice=-20 to
slurmctld.service)

▶ Create node template service (Rename slurmd.service to
slurmd@.service and add -N %i to slurmd call in ExecStart),
each node is a service (e.g. slurmd@atom00001, etc.)

▶ Start/stop scripts (complete reset, database wipe)

#!/bin/sh

systemctl stop slurmctld
systemctl stop slurmdbd
rm -rf /var/spool/slurm/* /var/log/

slurm/* /run/slurm/*

systemctl start slurmdbd
sleep 2
systemctl start slurmctld
printf "started slurmdbd, slurmctld\n"
for i in $(seq -f "%05g" 0 9999); do

systemctl start slurmd@atom$i;
printf "\rstarted atom $i/09999";

done
printf "\n"

#!/bin/sh

for i in $(seq -f "%05g" 0 9999); do
systemctl kill --signal=SIGKILL

slurmd@atom$i;
printf "\rstopped atom $i/09999";

done
printf "\n"
systemctl stop slurmctld
printf "stopped slurmctld\n"
systemctl stop slurmdbd
printf "stopped slurmdbd\n"
rm -rf /var/spool/slurm/* /var/log/

slurm/* /run/slurm/*
printf "DROP DATABASE slurm_acct_db;\n"

| mysql

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 8

sview(1)
Node Overview

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 9

sview(1)
Job Overview

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 10

WOGE (Workload Generator and Evaluator)
Overview

Core Functions
▶ Randomly generate DAG workloads
▶ Submit workload to Slurm
▶ Supervise execution and collect data

Implementation Notes
▶ C99 using POSIX interfaces
▶ Separate DAG from job parameters
▶ Parse job completion log for data

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 11

WOGE (Workload Generator and Evaluator)
Model Job

▶ Jobs are sleepers
▶ Target runtime is randomly jittered
▶ Batch script

#!/bin/sh

#SBATCH --job-name=sleep

sleep $EXECUTION_TIME

▶ Dummy job is extensible (telemetry, prolog/epilog, etc.)
▶ Control via environment variables

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 12

WOGE (Workload Generator and Evaluator)
Workload Generation and Slurm Interface

Workload generation and processing
▶ struct dag_parameters: Number of ranks, range of node count

per rank, range of number of dependencies per node
▶ dag_generate(): Generate DAG from parameters
▶ struct experiment: DAG parameters, job parameters
▶ experiment_run()

Slurm Interface
▶ Use Slurm CLI with execve(2) (high stability)
▶ slurm_clear_job_queue()
▶ slurm_submit_sleeper_job(): Job is submitted in a held state
▶ slurm_release_sleeper_jobs(): Single call to scontrol(1), no

loop

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 13

WOGE (Workload Generator and Evaluator)
Benchmark

▶ Machine: Intel Xeon E5-2637 v2, 4c8t, 192 GiB RAM
▶ Memory consumption: 16 MiB per virtual node, 160 GiB total
▶ Evaluation function: Time taken
▶ Workload: 1 day, speedup {1, 10, 20, . . . , 200}, 20 repetitions each

0 50 100 150 200

8.2

8.4

−2

0

2

·104

speedup factor

no
rm

al
ise

d
ru

nt
im

e/
s

de
vi

at
io

n
fro

m
sp

ee
du

p
fa

ct
or

1/
%

Only around 2-3% deviation despite speedup factor 200
Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 14

Conclusion
▶ Fully reproducible Slurm virtual exascale cluster setup, all steps laid

out (e.g. student reference)
▶ WOGE for submitting and evaluating artifical workloads
▶ Outlook: More intricate random distributions, graph generators

(more data needed)
▶ Long-term: Characterise workloads with a set of parameters and

reproduce it artificially this way

Laslo Hunhold, Stefan Wesner An Exascale Slurm Testing and Evaluation Environment Utilising Generated DAG Workloads 15

