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Motivation
Current state of Slurm simulators
▶ Mostly focus on scheduling performance
▶ Very fragile and broken due to large changes to Slurm codebase
▶ DAG workloads not supported, but more and more common due to

workflow managers/meta-schedulers

Exascale challenges
▶ Some previously trivial things become very difficult (e.g. GPU

testing/monitoring)
▶ Monitoring/data analysis tools require more testing
▶ No public access representative workload data

Reproducibility
▶ Many MODA innovations are unpublished, especially for exascale

systems
▶ Reproduction/Documentation is often difficult due to tight

integration
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Goals
Extend the scope of Slurm simulators
▶ Job prologs, epilogs, inter-job profiling, etc.
▶ Observe plugin interactions, facilitate software integration/testing
▶ Exascale testing and evaluation environment on a single node

Provide a robust and flexible solution
▶ Minimal code changes
▶ Wide range of applications (monitoring, analytics, etc.)

Improve reproducibility
▶ Clearly document environment setup
▶ Provide environment for testing and evaluation of exascale tooling

on test machines
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DAG Workload Generation (1/2)
Algorithm

▶ No data available, need to generate DAGs
▶ Proposed algorithm

input : r ∈ N0: number of ranks
n ≤ n ∈ N1: min./max. nodes per rank
d ≤ d ∈ N0: min./max. deps. per node

output: G := (V , E): directed acyclic graph
R1, . . . , Rr : sets of nodes of each rank

G = (V , E)← (∅, ∅)
for i ← 1 to r do

ni ← DiscreteUniformRandom(n, n)
Ri ← GenerateNodes(ni )
V ← V ∪ Ri
if i > 1 then

for j ← 1 to ni do
d ← Min(ni−1, DiscreteUniformRandom(d , d))
D ← DrawDistinctRandomFrom(Ri−1, d)
for k ← 1 to d do

E ← E ∪ (Ri [j], D[k])
end

end
end

end
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DAG Workload Generation (2/2)
Example and Parameter Choice

Parameter choice: High sparsity, low node degree
Job parameters: Randomly generated separately as ‘node weights’
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Exascale Slurm Setup (1/3)
Reference and first steps

Reference system: Frontier, Oak Ridge National Labs (1.194 EFLOPS)
▶ 74 rack cabinets, 64 blades per cabinet, 2 nodes per blade
▶ 9,472 ≈ 10,000 nodes, 64 cores per node

What stop us from running Slurm with 10,000 nodes on a single machine?

Basic configuration
▶ Compile Slurm from source with special flag

./configure ... ––enable-multiple-slurmd
▶ Modify slurm.conf: Include %n (node name) in SlurmdSpoolDir,

SlurmdLogFile, SlurmdPidFile
▶ Add node definitions

NodeName=atom[00000-09999] NodeHostname=HOSTNAME
Port=[10000-19999] Sockets=1 CPUs=1 CoresPerSocket=64
ThreadsPerCore=128 State=UNKNOWN PartitionName=part1
Nodes=ALL Default=YES MaxTime=INFINITE State=Up

Does it work? No, hits hard cgroup limits after 1,500 nodes
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Exascale Slurm Setup (2/3)
Trimming overhead

▶ Disable cgroup process tracking (Set ProctrackType to
proctrack/pgid)

▶ Disable task plugin
Does it work? No, nodes launch but are lobotomised

It turns out (after many hours)
▶ Systemd insists on being a ‘cgroup broker’ via dbus
▶ Chokes after around 2,500 nodes, no direct error
▶ Nodes start but can’t communicate with control daemon
▶ Solution (found in Slurm source, but also buried in the manual):

Create a file /etc/cgroup.conf containing IgnoreSystemd=yes
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Exascale Slurm Setup (3/3)
System integration and helper scripts

▶ Give Slurmctld a higher scheduling priority (add Nice=-20 to
slurmctld.service)

▶ Create node template service (Rename slurmd.service to
slurmd@.service and add -N %i to slurmd call in ExecStart),
each node is a service (e.g. slurmd@atom00001, etc.)

▶ Start/stop scripts (complete reset, database wipe)

#!/bin/sh

systemctl stop slurmctld
systemctl stop slurmdbd
rm -rf /var/spool/slurm/* /var/log/

slurm/* /run/slurm/*

systemctl start slurmdbd
sleep 2
systemctl start slurmctld
printf "started slurmdbd, slurmctld\n"
for i in $(seq -f "%05g" 0 9999); do

systemctl start slurmd@atom$i;
printf "\rstarted atom $i/09999";

done
printf "\n"

#!/bin/sh

for i in $(seq -f "%05g" 0 9999); do
systemctl kill --signal=SIGKILL

slurmd@atom$i;
printf "\rstopped atom $i/09999";

done
printf "\n"
systemctl stop slurmctld
printf "stopped slurmctld\n"
systemctl stop slurmdbd
printf "stopped slurmdbd\n"
rm -rf /var/spool/slurm/* /var/log/

slurm/* /run/slurm/*
printf "DROP DATABASE slurm_acct_db;\n"

| mysql
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sview(1)
Node Overview
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sview(1)
Job Overview
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WOGE (Workload Generator and Evaluator)
Overview

Core Functions
▶ Randomly generate DAG workloads
▶ Submit workload to Slurm
▶ Supervise execution and collect data

Implementation Notes
▶ C99 using POSIX interfaces
▶ Separate DAG from job parameters
▶ Parse job completion log for data
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WOGE (Workload Generator and Evaluator)
Model Job

▶ Jobs are sleepers
▶ Target runtime is randomly jittered
▶ Batch script

#!/bin/sh

#SBATCH --job-name=sleep

sleep $EXECUTION_TIME

▶ Dummy job is extensible (telemetry, prolog/epilog, etc.)
▶ Control via environment variables
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WOGE (Workload Generator and Evaluator)
Workload Generation and Slurm Interface

Workload generation and processing
▶ struct dag_parameters: Number of ranks, range of node count

per rank, range of number of dependencies per node
▶ dag_generate(): Generate DAG from parameters
▶ struct experiment: DAG parameters, job parameters
▶ experiment_run()

Slurm Interface
▶ Use Slurm CLI with execve(2) (high stability)
▶ slurm_clear_job_queue()
▶ slurm_submit_sleeper_job(): Job is submitted in a held state
▶ slurm_release_sleeper_jobs(): Single call to scontrol(1), no

loop
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WOGE (Workload Generator and Evaluator)
Benchmark

▶ Machine: Intel Xeon E5-2637 v2, 4c8t, 192 GiB RAM
▶ Memory consumption: 16 MiB per virtual node, 160 GiB total
▶ Evaluation function: Time taken
▶ Workload: 1 day, speedup {1, 10, 20, . . . , 200}, 20 repetitions each
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Only around 2-3% deviation despite speedup factor 200
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Conclusion
▶ Fully reproducible Slurm virtual exascale cluster setup, all steps laid

out (e.g. student reference)
▶ WOGE for submitting and evaluating artifical workloads
▶ Outlook: More intricate random distributions, graph generators

(more data needed)
▶ Long-term: Characterise workloads with a set of parameters and

reproduce it artificially this way
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