ML-based methodology for HPC facilities supervision

UVS

UNIVERSITE PARIS-SACLAY

lopaze

ISC HPC International Workshop on Monitoring and Operational Data Analytics (MODA23)

Ces

Laetitia Anton, Sophie Willemot, Sébastien Gougeaud, Soraya Zertal

Contents

1. Context

Limitations & Targets

2. Related works

3. Workflow

Phase 1: Collecting & filtering raw data Phase 2: Clustering & Statistical analysis Phase 3: Visualisation & Automation

4. Results and discussion

5. Conclusion and future works

Context

FENIX

- TGCC computing center
 - Joliot-Curie supercomputer: 22 Petaflops
 - Topaze supercomputer: 8.8 Petaflops
- HPC facilities
 - Infrastructure temperature (compute nodes, fans, water circuit)
 - External temperature
 - Energy consumption (computation, facilities)
 - Water consumption
 - Fan rotation

→ Administrators need to check everything

Limitations

- Huge amount of information to process
- Increase of the number of heterogenous components
- Supervision is getting complex
 - Anomalies are more difficult to detect

Targets

FENIX

- Detection of abnormal behaviour
- Reduction of energy consumption

Related works

Works around AI for operational HPC:

- To predict anomalies/health status on hardware
- To predict workload intensity on HPC
- To predict energy consumption of HPC facilities

> But at our knowledge, none for consumption tuning around facilities

Workflow

Phase 1: Collecting and filtering raw data

- Raw data:
 - Two years of collected data
 - Frequency of one measurement per minute
 - > 93 probes from different devices & levels of the infrastructure

9

Phase 1: Collecting and filtering raw data

- Raw data:
 - Two years of collected data
 - Frequency of one measurement per minute
 - > 93 probes from different devices & levels of the infrastructure

- Filtered data:
 - > Unreliable and incomplete data removed: **89 probes** finally retained
 - > Data reduction factor of 4.5: for 1 year from 1.2GB to 264MB
 - Focus on 1st quarter 2020

Phase 2: Clustering

- Target: grouping similar events into typical behaviors
- HDBSCAN as clustering method: based on cluster density, number of clusters auto-determined by setting a minimum density threshold

Phase 2: Statistical analysis

- Identification of clusters with the same operating mode
 - > Operating metrics X : external temperature and workload intensity

Determination of the deviant metrics and their impact

Why are there 2 clusters in the same operating mode?

Calculation of the impact of each involved metric \succ by measuring the gap between the quartiles of the 2 clusters

- Identification of clusters with the same operating mode
 - Operating metrics X : external temperature and workload intensity \succ

Phase 2: Statistical analysis – Application

20

15

10

External temperature (°C) Q1 2020

Cluster 4 and 0 share the same operating mode

Phase 2: Statistical analysis – Application

> Abnormal value for this inverter: an anomaly has been found

Phase 3: Automation

Phase 3: Visualisation

 t-SNE algorithm (t-distributed Stochastic Neighbor Embedding) used to represent multi-dimensional data in a 2D representation

<u>t-SNE visualisation of the clustered dataset</u> <u>Q1 2020</u>

Phase 3: Visualisation

 t-SNE algorithm (t-distributed Stochastic Neighbor Embedding) used to represent multi-dimensional data in a 2D representation

<u>t-SNE visualisation of the clustered dataset</u> <u>Q1 2020</u>

 All these visualisations (time-series, t-SNE, 3D) with or without clustering are available to our administrators in the application

Results and discussion

- Capable of detect anomaly
 - > Detection of an inconsistency upon power cables

19

Results and discussion

- Capable of detect anomaly
 - > Detection of an inconsistency upon power cables
- What's about PUE ?
 - Look for the most stable and lowest PUE
 - Apply the parameters of one cluster rather

than another

Results and discussion

- Capable of detect anomaly
 - > Detection of an inconsistency upon power cables

- Look for the most stable and lowest PUE
- Apply the parameters of one cluster rather than another
- → A guideline for PUE improvement according to the workload is suggested to the infrastructure admin

Conclusion and future works

- Generic supervision methodology with ML-based algorithms
 - > clear and dynamic supervision
 - highlight similar or abnormal behaviours

Conclusion and future works

- Generic supervision methodology with ML-based algorithms
 - clear and dynamic supervision
 - highlight similar or abnormal behaviours
- Tool available for infrastructure admins
 - preparation and clusterisation of data
 - visualisation of time series, t-SNE, 3D
 - > automatic cluster comparisons

Conclusion and future works

- Generic supervision methodology with ML-based algorithms
 - clear and dynamic supervision
 - highlight similar or abnormal behaviours
- Tool available for infrastructure admins
 - preparation and clusterisation of data
 - visualisation of time series, t-SNE, 3D
 - > automatic cluster comparisons
- Prospects:
 - > implementation of alarms to warn of changes within the same operating mode
 - anticipation of deviant behaviour

Questions?

Laetitia Anton, laetitia.anton@cea.fr

Sophie Willemot, sophie.willemot@cea.fr

Sébastien Gougeaud, sebastien.gougeaud@cea.fr

Soraya Zertal, <u>soraya.zertal@uvsq.fr</u>