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Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm
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A Lightweight Simulation

I Development of a simulation mode for Slurm started with A. Lucero in 20111 and has been
iterated on in some other excellent works2,3

→ Modify the Slurm source code to emulate communication from nodes and skip through time
→ Limited speed up and extensibility

I Current research into HPC scheduling often uses custom simulations to evaluate algorithms
→ These can be simplistic and not replicate the configuration of a real system

I We propose a fast simulation that can accurately reproduce the dynamics of real Slurm
without trying to reproduce the specific design
→ Implement features directly relevant to scheduling from scratch

1Lucero, A.: Simulation of batch scheduling using real production-ready software tools (2011)
2Jokanovic, A. et al.: Evaluating slurm simulator with real-machine slurm and vice versa (2018)
3Simakov, N. et al.: A Slurm Simulator: Implementation and Parametric Analysis (2018)
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Simulation Structure

Controller

Controller(config : str)
run sim()
step(sched : bool, bf : bool, fairtree :

bool)

SlurmDataReader

Partitions

Partition

Node
down schedule : list of tuple
reservation schedule : list of tu-
ple

Queue
job trace : list of Job
prio queue : list of Job

MFPrioritySorter

FairTree

Job

Dependency

QOS

AssocLimit

System Queue
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Key Simulation Features

Backfilling
Conservative backfilling algorithm that simulates backfilling thread lock release

Resource Limits
Resource limits tracked at quality of service and association level

MultiFactor Priority and Fairshare
Queue sorted using a hierarchy of job features including a fairshare factor.
Fairshare is implemented by sorting a rooted ordered tree of users association
by usage and system allocation (Slurm’s Fair Tree).
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Limitations

I Recovering full job and system information from Slurm accounting database
→ Information such as dependencies and requested nodes can only be recovered if

submitted via command line rather than in batch script
→ Completed reservations not stored

I Some scheduling features missing from simulation
→ Nodes are the only consumable resource
→ Advanced features: job preemption and heterogeneous jobs
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ARCHER2

I Development of simulation was closely tied to ARCHER2

I ARCHER2 is the UK’s national supercomputer consisting of 23 HPE Cray EX
cabinets forming a network of 5,860 CPU compute nodes, 28 in TOP500

I 4 month job trace with ∼600,000 jobs used to validate simulation accuracy
→ Dependencies, overlapping partitions, multiple QoS, advanced reservations,

record of down nodes,. . .
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QoS Wait Times
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Largescale Jobs Discrepancy
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Job Size Response
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Job Length Response
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Other Systems: LUMI

I Important to check that the simulation is not tuned to ARCHER2
I LUMI is Europe’s fastest supercomputer and part of the EuroHPC Joint

Undertaking
→ We consider the standard partition consisting of 1,022 CPU nodes

I 3 month job trace numbering ∼25,000 jobs
I Difficulty recovering past reservations
→ Approximate using the maximum utilisation from jobs without reservations in a 2

day window
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Performance

I ARCHER2 simulation takes approximately 7 hours 20 minutes, LUMI 25 minutes
→ Speed up of ∼400 for ARCHER2 (400 simulation minutes takes 1 minute)
→ Single threaded, memory usage ∼2 Gb depending on job trace size
→ Processing time dominated by backfilling

I Speed ups from simulators in literature are typically between 10 and 25

I Exception is work from Barcelona Supercomputing Center1 which achieves a 220
speed up with the CAE Curie log from the Parallel Workloads archive
→ ∼200,000 jobs over an 8 month period running on 5,040 nodes
→ Archive states 62% utilisation
→ Unclear how performance would translate to modern 90+% utilisation workloads

I Direct comparisons between simulators is important future work

1Jokanovic, A. et al.: Evaluating slurm simulator with real-machine slurm and vice versa (2018)
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Using the Simulator

I The simulator can be used to understand the effect of changes in scheduler
behaviour on a production system

I Start with a simple change to ARCHER2’s QoS configuration: adding a high
priority QoS

I Consider scenarios with increasing proportions of standard QoS jobs being
submitted as highpriority in the historical job trace
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Large Jobs at Peak Times

I Slurm can be configured to associate energy counters from nodes with the
jobs running on them
→ System power usage can then be estimated from the jobs running at any given

time in the simulation

I Consider scheduling jobs to minimise power usage during peak times of day
→ Even with backfilling large jobs will require the system to partially drain in order to

be scheduled
→ Hold largescale jobs until morning, specific time depending on size
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System Efficiency
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Summary and Future Work

I A fast and easily extendable scheduling simulation that incorporates many
features of Slurm

I Validated with modern production systems

I Potential of simulation to provide insight into scheduling strategies
demonstrated

I Future work:
→ Direct comparisons with existing simulations
→ Improving feature coverage of simulation to validate with a wider range of HPC

systems
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Backup

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 3



Job Size Response LUMI

100 101 102

Nodes

100

101

102

103

104

W
ai

t (
m

)
Data

100 101 102

Nodes

100

101

102

103

104

W
ai

t (
m

)

Sim

0.2

0.4

0.6

0.8

1.0

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 2 / 3



Job Length Response LUMI
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