
A Fast Simulator to Enable HPC Scheduling
Strategy Comparisons

Alex Wilkinson 1,2, Jess Jones 2, Harvey Richardson 2, Tim Dykes 2, and
Utz-Uwe Haus 2

1University College London, United Kingdom

2HPE HPC/AI EMEA Research Lab, United Kingdom

25 May 2023



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs

Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs

Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



Introduction
I Job schedulers are a vital part of running an efficient HPC system

System state S

Waiting jobs J Scheduler F (J,S; θ)

Configuration θ

Running jobs Science, money,
happiness. . .

Optimise F and θ w.r.t. a combination of these

perf counters,
temperatures,
wind speed,. . .

I Simulation allows exploration of configurations and scheduling algorithms without
risking system efficiency — we will focus on the popular workload manager Slurm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 22



A Lightweight Simulation

I Development of a simulation mode for Slurm started with A. Lucero in 20111 and has been
iterated on in some other excellent works2,3

→ Modify the Slurm source code to emulate communication from nodes and skip through time
→ Limited speed up and extensibility

I Current research into HPC scheduling often uses custom simulations to evaluate algorithms
→ These can be simplistic and not replicate the configuration of a real system

I We propose a fast simulation that can accurately reproduce the dynamics of real Slurm
without trying to reproduce the specific design
→ Implement features directly relevant to scheduling from scratch

1Lucero, A.: Simulation of batch scheduling using real production-ready software tools (2011)
2Jokanovic, A. et al.: Evaluating slurm simulator with real-machine slurm and vice versa (2018)
3Simakov, N. et al.: A Slurm Simulator: Implementation and Parametric Analysis (2018)

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 2 / 22



Simulation Structure

Controller

Controller(config : str)
run sim()
step(sched : bool, bf : bool, fairtree :

bool)

SlurmDataReader

Partitions

Partition

Node
down schedule : list of tuple
reservation schedule : list of tu-
ple

Queue
job trace : list of Job
prio queue : list of Job

MFPrioritySorter

FairTree

Job

Dependency

QOS

AssocLimit

System Queue

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 3 / 22



Key Simulation Features

Backfilling
Conservative backfilling algorithm that simulates backfilling thread lock release

Resource Limits
Resource limits tracked at quality of service and association level

MultiFactor Priority and Fairshare
Queue sorted using a hierarchy of job features including a fairshare factor.
Fairshare is implemented by sorting a rooted ordered tree of users association
by usage and system allocation (Slurm’s Fair Tree).

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 4 / 22



Limitations

I Recovering full job and system information from Slurm accounting database
→ Information such as dependencies and requested nodes can only be recovered if

submitted via command line rather than in batch script
→ Completed reservations not stored

I Some scheduling features missing from simulation
→ Nodes are the only consumable resource
→ Advanced features: job preemption and heterogeneous jobs

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 5 / 22



ARCHER2

I Development of simulation was closely tied to ARCHER2

I ARCHER2 is the UK’s national supercomputer consisting of 23 HPE Cray EX
cabinets forming a network of 5,860 CPU compute nodes, 28 in TOP500

I 4 month job trace with ∼600,000 jobs used to validate simulation accuracy
→ Dependencies, overlapping partitions, multiple QoS, advanced reservations,

record of down nodes,. . .

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 6 / 22



Wait Times

0

1

2

3

4

5

6

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window
Sim
Data

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

10

20

St
d 

De
v 

W
ai

t (
hr

)

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 7 / 22



QoS Wait Times

100

101

102
standard lowpriority taskfarm

Sim
Data

2022-12 2023-01 2023-02 2023-03

100

101

102
long

2022-12 2023-01 2023-02 2023-03

highmem

2022-12 2023-01 2023-02 2023-03

largescale

Middle Hour of Window

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window by QoS

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 8 / 22



Largescale Jobs Discrepancy

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

5

10

15

20

25

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window Largescale QoS
Sim
Data

12-09 12 12-09 18 12-10 00 12-10 06
Time

60

70

80

90

100

Ut
ilis

at
io

n 
(%

)

Utilisation Sampled each Minute

Sim
Data

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 9 / 22



User Wait Times

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

0

10

20

30

40
M

ea
n 

W
ai

t (
hr

)

39
.2

24
.7

16
.3

14
.9

10
.3

10
.6 12

.2

10
.2

8.
5

8.
0

5.
9

1.
9 3.

6

0.
6 1.
1

41
.7

31
.6

17
.9

17
.6

13
.6

13
.2

12
.9

8.
9

8.
4

7.
1

6.
4

4.
0

2.
6

2.
0

1.
3

Wait Times for Users with Highest Usage
Sim
Data

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 10 / 22



Job Size Response

100 101 102 103

100

101

102

103

104

W
ai

t (
m

in
)
Data

100 101 102 103

Sim

Req Nodes

Wait Times by Job Requested Nodes

0.2

0.4

0.6

0.8

1.0

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 11 / 22



Job Length Response

100 101 102 103

100

101

102

103

104

W
ai

t (
m

in
)
Data

100 101 102 103

100

101

102

103

104

Sim

Req Time (min)

Wait Times by Job Requested Time

0.2

0.4

0.6

0.8

1.0

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 12 / 22



Other Systems: LUMI

I Important to check that the simulation is not tuned to ARCHER2
I LUMI is Europe’s fastest supercomputer and part of the EuroHPC Joint

Undertaking
→ We consider the standard partition consisting of 1,022 CPU nodes

I 3 month job trace numbering ∼25,000 jobs
I Difficulty recovering past reservations
→ Approximate using the maximum utilisation from jobs without reservations in a 2

day window

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 13 / 22



LUMI Wait Times

0

1

2

3

4

5

6

7

M
ov

in
g 

av
er

ge
 w

ai
t t

im
e 

(h
)

Sim
Data

2023-02-01 2023-02-08 2023-02-15 2023-02-22 2023-03-01 2023-03-08 2023-03-15
Middle hour of window

0

10

20

30

40

M
ov

in
g 

st
d 

de
v 

wa
it 

tim
e 

(h
)

0

1

2

3

4

5

6

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window
Sim
Data

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

10

20

St
d 

De
v 

W
ai

t (
hr

) 0

1

2

3

4

5

6

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window
Sim
Data

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

10

20

St
d 

De
v 

W
ai

t (
hr

)

0

1

2

3

4

5

6

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window
Sim
Data

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

10

20

St
d 

De
v 

W
ai

t (
hr

)

0

1

2

3

4

5

6

M
ea

n 
W

ai
t (

hr
)

Wait Time 2 Week Moving Window
Sim
Data

2022-12 2023-01 2023-02 2023-03
Middle Hour of Window

0

10

20

St
d 

De
v 

W
ai

t (
hr

)

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 14 / 22



LUMI User Wait Times

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

0

50

100

150

200
M

ea
n 

W
ai

t T
im

e 
(h

rs
) 17

3.
3

9.
0

33
.5

7.
7 9.
6 10
.6

10
.4

6.
3

15
.7

5.
5 7.
9 9.
0

3.
7

2.
7 4.
3

22
0.

0

68
.9

34
.9

33
.8

21
.2

16
.7

15
.6

14
.8

11
.9

10
.9

10
.2

10
.1

6.
9

4.
7

1.
0

Wait times for users with highest usage
Sim
Data

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

0

10

20

30

40

M
ea

n 
W

ai
t (

hr
)

39
.2

24
.7

16
.3

14
.9

10
.3

10
.6 12

.2

10
.2

8.
5

8.
0

5.
9

1.
9 3.

6

0.
6 1.
1

41
.7

31
.6

17
.9

17
.6

13
.6

13
.2

12
.9

8.
9

8.
4

7.
1

6.
4

4.
0

2.
6

2.
0

1.
3

Wait Times for Users with Highest Usage
Sim
Data

User
1

User
2

User
3

User
4

User
5

User
6

User
7

User
8

User
9

User
10

User
11

User
12

User
13

User
14

User
15

0

10

20

30

40
M

ea
n 

W
ai

t (
hr

)

39
.2

24
.7

16
.3

14
.9

10
.3

10
.6 12

.2

10
.2

8.
5

8.
0

5.
9

1.
9 3.

6

0.
6 1.
1

41
.7

31
.6

17
.9

17
.6

13
.6

13
.2

12
.9

8.
9

8.
4

7.
1

6.
4

4.
0

2.
6

2.
0

1.
3

Wait Times for Users with Highest Usage
Sim
Data

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 15 / 22



Performance

I ARCHER2 simulation takes approximately 7 hours 20 minutes, LUMI 25 minutes
→ Speed up of ∼400 for ARCHER2 (400 simulation minutes takes 1 minute)
→ Single threaded, memory usage ∼2 Gb depending on job trace size
→ Processing time dominated by backfilling

I Speed ups from simulators in literature are typically between 10 and 25

I Exception is work from Barcelona Supercomputing Center1 which achieves a 220
speed up with the CAE Curie log from the Parallel Workloads archive
→ ∼200,000 jobs over an 8 month period running on 5,040 nodes
→ Archive states 62% utilisation
→ Unclear how performance would translate to modern 90+% utilisation workloads

I Direct comparisons between simulators is important future work

1Jokanovic, A. et al.: Evaluating slurm simulator with real-machine slurm and vice versa (2018)

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 16 / 22



Using the Simulator

I The simulator can be used to understand the effect of changes in scheduler
behaviour on a production system

I Start with a simple change to ARCHER2’s QoS configuration: adding a high
priority QoS

I Consider scenarios with increasing proportions of standard QoS jobs being
submitted as highpriority in the historical job trace

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 17 / 22



High Priority

standard

lowpriority

taskfarm

longhighmem

largescale

highpriority

0.5

0.75

1

2

4

8

% standard jobs submitted as highpriority:

Mean QoS Wait Time Relative to Nominal Simulation

5% 10% 30% 50% Nominal

mean_slowdown

mean_wait

max_wait

mean_
response

0.9

1

1.1

1.2

% standard jobs submitted as highpriority:

Performance Metrics Relative to Nominal Simulation

5% 10% 30% 50% Nominal

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 18 / 22



Large Jobs at Peak Times

I Slurm can be configured to associate energy counters from nodes with the
jobs running on them
→ System power usage can then be estimated from the jobs running at any given

time in the simulation

I Consider scheduling jobs to minimise power usage during peak times of day
→ Even with backfilling large jobs will require the system to partially drain in order to

be scheduled
→ Hold largescale jobs until morning, specific time depending on size

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 19 / 22



Power Usage

10-24 10-25 10-26 10-27 10-28 10-29 10-30 10-31 11-01 11-02 11-03
Time

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Po
we

r (
M

W
)

Power Usage Difference for Modified and Nominal Simulation Sampled Hourly
Nominal > Modified
Modified > Nominal
11am - 4pm

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 20 / 22



System Efficiency
mean_slowdown

mean_wait

max_wait

mean_
response

0.9

1

Performance Metrics Relative to Nominal Simulation

Modified Nominal

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 21 / 22



Summary and Future Work

I A fast and easily extendable scheduling simulation that incorporates many
features of Slurm

I Validated with modern production systems

I Potential of simulation to provide insight into scheduling strategies
demonstrated

I Future work:
→ Direct comparisons with existing simulations
→ Improving feature coverage of simulation to validate with a wider range of HPC

systems

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 22 / 22



Backup

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 1 / 3



Job Size Response LUMI

100 101 102

Nodes

100

101

102

103

104

W
ai

t (
m

)
Data

100 101 102

Nodes

100

101

102

103

104

W
ai

t (
m

)

Sim

0.2

0.4

0.6

0.8

1.0

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 2 / 3



Job Length Response LUMI

100 101 102 103

Req Time (m)

100

101

102

103

104

W
ai

t (
m

)
Data

100 101 102 103

Req Time (m)

100

101

102

103

104

W
ai

t (
m

)

Sim

0.2

0.4

0.6

0.8

1.0

Alex Wilkinson A Fast Simulator to Enable HPC Scheduling Strategy Comparisons 3 / 3


	Appendix
	Appendix


